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• Review of classical gates and circuits 
– The “not”, “and”, and “or” operators (gates)
– Reversible CNOT gate

• Qubit representation on the complex polar coordinate system
– Qubit as a 3D vector on the Bloch sphere
– Qubit evolution and transformations as rotations on the unit Bloch sphere
– Gate representation of qubit operations
– Gate based circuits for qubit transformations

• No Cloning theorem 
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Agenda



• George Boole introduced the notion that certain aspects of logic could 
be represented algebraically.

• The most common logical operators that connect  logical statements 
are not, and and or.

• When used to join statements, the operators can help establish the 
combined truth or falseness of a compound statement.

• For example: if  “𝑃 = 𝑖 + 1 = 𝑒𝑣𝑒𝑛, for 𝑖 = 1, 2, 3…𝑛” and       
“𝑄 = 2𝑖 = 𝑒𝑣𝑒𝑛, for 𝑖 = 1,2,3…𝑛” one realizes that each of the  
statements can either be true (T)  or false (F) and nothing else. A truth 
table specifying the joint truthfulness of “𝑃 𝑎𝑛𝑑 𝑄” and “𝑃 𝑜𝑟 𝑄” can 
be created as indicated on the right; the "𝑜𝑟” here is inclusive “or.”
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Logic



• The logical operator “or” usually has two definitions: one is inclusive and the other exclusive, 
meaning that in the former case if both P and Q are true, then “P or Q” is true; in the later, if P is true 
and Q is true, then “P or  Q”  is false.  The exclusive “or”  is symbolized as “P⨁Q”.

• For P and Q, the “not” operator signifies falseness of P as ¬P and that of Q as ¬Q.

• Statements P and Q can be general statements where each is either true or false on its own right.  
Any of the two “joining” logical operators   “and” and “or”  can be  used to combine them after or 
before application  of  the  “not” operator.  The combined statement can then be written in Boolean 
algebraic form.  

• The symbols for the logical operators are  “not ≔ ¬”, “and ≔∩ ”, “or ≔∪ ”, and “xor ≔⊕ ”.
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General Logical Statements and Operators 



• A consequence of joining logical statements with logical operators is  Boolean algebraic statements.  The 
example above shows how the two general statements P and Q can be joined  with any of the logical 
operators and then re-expressed in Boolean algebraic form.

• The  third and last columns of the Table above are logically equivalent, allowing one to write 
𝑃 ∪ 𝑄 = ¬ ¬𝑃 ∩ ¬𝑄 Eqn. (11.1).

• One also deduces that the 4th column in the Table  is equivalent to column combinations (1, 2, 5, &6): 
• 𝑃 ⊕ 𝑄 = 𝑃 ∩ ¬𝑄 ∪ ¬𝑃 ∩ 𝑄 Eqn. (11.2).
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Boolean Algebra 
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• We have shown that logical statements 
that are either true or false have a binary 
character  to them that is easily 
represented by either 1 or  0.

• With 1 and 0 standing in for T and  F, the 
truth  table for our general P and  Q  
statements using only the  “and” and 
“not” operators is illustrated on the right.

• Notice that ¬𝑄 ≡ ¬ 𝑄 ∩ 𝑄 , which 
indicates that the “not-and”  operator or 
“Nand” can replace other operators;   the  
Nand is therefore a  universal  operator 
(gate). 

Nand Operator (and Gate)



• It was realized early and demonstrated by Claude Shannon (of information theory fame) that since logic 
could be expressed in algebraic terms, then  switches could be built that could emulate the 1’s and 0’s of 
the logical algebraic expressions.

• The combination  of switches corresponding to the binary operators  are called gates. Common gates 
include the “OR”, “NOR”,  “AND” , and  “NAND” gates. The “NAND” gate is said to  be functionally 
complete which means it is universal; it can replace any other logical gate.

• Gates are the building blocks of modern computers and are the basis for implementing computation. We 
have already established (in slide 5, when you replace T with 1 and F with 0) that the “exclusive or” 
operator has the following properties:

0⊕ 0 = 0, 0 ⊕ 1 = 1, 1 ⊕ 0 = 1, 1 ⊕ 1 = 0.

• The “exclusive or” operator and the “and”  operator can be used to build a half-adder for computing.
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(Classical) Gates 
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• Classical computing circuits  are created  by connecting 
gates that represent certain logical operations derived from 
algebraic simplification of Boolean functions.  The gates 
are connected using  wires; whenever necessary, one can 
fan-out  signals to share with other gates (as long as there 
is sufficient signal to drive the sharing inputs) .

• The half-adder circuit can be implemented using an 
“exclusive or” gate and an “and” gate.  A  full adder circuit 
can be implemented with just the universal “nand” gate.

• Observe that ”copying” of information as indicated in the 
sharing  of signals by  the “XOR” and the “AND ” gates, 
while allowed for classical circuits such as the half-adder 
example here, is prohibited in quantum gate circuits.  This 
is because of the no-cloning theorem in quantum 
mechanics. We briefly discuss  this later in the Lecture.

(Classical) Gates and Circuits
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• Sometimes it is of interest to determine the input of a 
gate given the output.   This is generally not possible 
for most classical gates since most gates have two 
inputs and one output. 

• If  a gate can perform a function that provides an 
output from which one can determine the input, then 
such a gate is called reversible.

• The only known classical gate that is  reversible is 
the Controlled Not Gate or CNOT gate.  The CNOT 
function is defined as 𝑓 𝑝, 𝑞 = 𝑝, 𝑝 ⊕ 𝑞 . The 
circuit diagram, symbol, and the truth table for the 
CNOT gate  are shown on the right.

• For each pair of output, there is only one pair of 
input that corresponds to it.

Reversible Classical Operators (Gates)



• In a previous Lecture, we defined the qubit as an object in complex two-dimensional space, ℂ!. This definition is 
repeated  below in three variations.

|𝜓 > = 𝛼 0 > +𝛽 1 >

= 𝛼 1
0 + 𝛽 0

1
=

𝛼
𝛽

where 𝛼 ! + 𝛽 ! = 1, Eqn. (11.3).

• The amplitude  coefficients 𝛼 and 𝛽 are complex numbers,  which permits us to rewrite the  first  version of the  
qubit definition in Eqn. (11.3) using the  polar form of complex numbers;  thus

⟩|𝜓 = 𝑟"𝑒#$! ⟩|0 + 𝑟%𝑒#$" ⟩|1 Eqn. (11.4).
• To simplify (11.4), we invoke the fact that phase factors in state vectors have no physical significance in measurable 

quantities; we can therefore  multiply (11.4) by a phase 𝑒&#$! without changing the physics;  

0
1| 2𝜓 = 𝑒&#$! 𝑟"𝑒#$! ⟩|0 + 𝑟%𝑒#$" ⟩|1

= 𝑟" ⟩|0 + 𝑟%𝑒# $"&$! ⟩|1
= 𝑟" ⟩|0 + 𝑟%𝑒#$ ⟩|1

Eqn.  (11.5)
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The Qubit in Complex Number Polar Representation



• Our new state vector from (11.5)  inherits the constraint of the original state vector (11.3), thus

1| 2𝜓 = 𝑟" ⟩|0 + 𝑟%𝑒#$ ⟩|1 still has the constraint 𝑟" ! + 𝑟%𝑒#$
! = 1 Eqn.  (11.5).

• The constraint on (11.5) can be rewritten as   𝛼 ! + 𝛽 ! = 1 = 𝑟" ! + 𝑥 + 𝑗𝑦 ! = 𝑟"! + 𝑥! + 𝑦! Eqn. (11.6).

• Note that we  have replaced 𝑒# $"&$! with 𝑒#$ in (11.4) and 𝑟%𝑒#$ with 𝑥 + 𝑗𝑦 in (11.5);  Eqn. (11.6) has the first 
clue  that tells us  that the complex amplitudes can be thought of as living in 3D space, with 𝑟" ≡ 𝑧.

• In geometry, the spherical coordinate system and the Cartesian coordinate system  are related through the expressions:
𝑥 = 𝑟 sin 𝜗 cos𝜑,  𝑦 = 𝑟 sin 𝜗 sin 𝜑, 𝑧 = 𝑟 cos 𝜗 for  0 ≤ 𝜗 < 𝜋 and 0 ≤ 𝜑 < 2𝜋 Eqn. (11.7).

• We can therefore rewrite (11.6) using the relationships in (11.7), with 𝑟 = 1, to get:

0
1| 2𝜓 = 𝑧 ⟩|0 + (𝑥 + 𝑗𝑦) ⟩|1
1| 2𝜓 = cos 𝜗 ⟩|0 + sin 𝜗 cos𝜑 + 𝑗 sin𝜑 ⟩|1
1| 2𝜓 = cos 𝜗 ⟩|0 + 𝑒#' sin 𝜗 ⟩|1

Eqn. (11.8).
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The Qubit in Spherical Coordinates



• To properly embed the complex amplitudes into 3D space, we must recognize that 𝜗 is  restricted  
between 0 and 𝜋; for the sphere we are interested in, it must be extended to 2𝜋, or we must use a 
definition that is half the angle  𝜗 in (11.8).

• We rewrite (11.8) to take account of this fact, thus

N| P𝜓 = cos !
"

⟩|0 + 𝑒#$ sin !
"

⟩|1 Eqn. (11.9).

• We now note that our original qubit (11.5) only differs from (11.9) by a phase factor, i.e., N| P𝜓 =
𝑒%#!! ⟩|𝜓 .  According to one of the Axioms of Quantum Mechanics, the average value of any real 
physical quantity represented by a Hermitian operator, V𝐻, is given by X𝜓| V𝐻 ⟩|𝜓 = X P𝜓| V𝐻 N| P𝜓 , independent 
of any phase factor.  We can therefore invoke the equality of ⟩|𝜓 to N| P𝜓 ; thus

⟩|𝜓 = N| P𝜓 = cos !
"

⟩|0 + 𝑒#$ sin !
"

⟩|1 =
cos !

"

𝑒#$ sin !
"

Eqn. (11.10).

• The last equality of Eqn. (11.10) is equivalent to out original vector version of the qubit in Eqn. (11.3).
12

The Quantum Bit as a 3D Unit Vector
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• The last expression of Eqn. (11.10)  indicates how the qubit is a point on a  circle 
with unit radius on a 2D plane.  This is illustrated on the right.  However, 
according to (11.8), the qubit can  also be considered as a 3D vector that lives on 
a sphere of unit  radius, shown alongside the circle.  Both interpretations are 
valid.

• To determine the location of the quantum state ⟩|1 = 0
1 , we simply equate this 

to the last expression of (11.10) and find the relevant angles: 

• 0
1 =

cos "
#

𝑒$% sin "
#

⟹ ϑ = 𝜋 and 𝜑 = 0. This is pointing in the negative z-axis. 

• For the state ⟩|0 = 1
0 =

cos "
#

𝑒$% sin "
#

⟹ ϑ = 0 and 𝜑 = 0.

• The ⟩|0 state is pointing in the positive z-axis  while the state ⟩|1 states is 
pointing in  the  negative z-direction. These states are  shown on the spherical 
graphic. Single-qubit state vectors correspond to points  on the Bloch  sphere.

The Qubit on the Bloch Unit Sphere



• Now that we know what a qubit is, we would like to know what kind of operations we can perform on it.

• Quantum operations correspond to evolution of the state vector, ⟩|𝜓 , according to the Schrodinger 
equation,

𝑗ℏ & ⟩|)
&*

= V𝐻 ⟩|𝜓 Eqn. (11.11).

• Assuming an initial state ⟩|𝜓(𝑡 = 0) , the solution of (11.11) can be obtained by integration as
⟩|𝜓(𝑡) = 𝑒%# ⁄,- ℏ * ⟩|𝜓(𝑡 = 0) = 𝑈 ⟩|𝜓(𝑡 = 0) Eqn. (11.12).

• Since a state vector must remain normalized and for the qubit in particular, the length must not change, 
this means the evolution operator, 𝑈, in (11.12) must be unitary.

• Since	𝑈 = 𝑒%# ⁄,- ℏ *,	the		unitarity	requirement	means	
𝑈𝑈/ = 𝑈/𝑈 = 𝕀 Eqn.	(11.13).

• From the	definition	of	the	qubit	in	(11.3)	as	a	2D	vector,	it	must	follow	that	𝑈 is	a	unitary	2×2
matrix		operator,	 𝑈 =

𝑢00 𝑢01
𝑢10 𝑢11 .

14

Operations on a Single Qubit



• Temporal evolution of the qubit or its manipulations over time are equivalent to rotations of the qubit on  the  
surface of the Bloch Sphere.

• For an arbitrary rotation of the qubit on the Bloch sphere by an angle 𝜗, one can write the unitary operator for 
carrying out this rotation as

𝑈 = 𝑒#
#
$( = cos $

!
𝕀 + 𝑗 sin $

!
𝝆 Eqn. (11.14),

• To obtain the expression in red, expand the exponential as a series, then collect terms to identify the 
trigonometric functions. We define 𝝆 = $𝑛. 𝝆! = 𝑥𝑋 + 𝑦𝑌 + 𝑧𝑍 in  Eqn. (11.14), and further provide the unit 
normal vector on the Bloch sphere as $𝑛 = $𝑥 + $𝑦 + 𝑧̂ (𝑥 = sin 𝜗 cos𝜑, 𝑦 = sin 𝜗 sin𝜑, 𝑧 = cos 𝜗) ; 𝝆𝒊 is a 
“vector” comprised of the orthonormal Pauli basis “vectors” on the Bloch sphere.  These  “vectors” are the 
Pauli  matrices we have discussed before and are listed below.

𝑋 = 0 1
1 0 , 𝑌 = 0 −𝑗

𝑗 0 , 𝑍 = 1 0
0 −1 Eqn. (11.15).

• From (11.14) and (11.15), rotations in various axes are therefore given by

𝑅& 𝜗 =
cos "

#
𝑗 sin "

#

𝑗 sin "# cos "#
, 𝑅' 𝜗 =

cos "
#

sin "
#

− sin "# cos "#
, 𝑅( 𝜗 = 𝑒$ ⁄" # 0

0 𝑒*$ ⁄" # Eqn. (11.16).
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Rotations on the Bloch Sphere



• It can be easily proved that the Pauli matrices in (11.15) have the following properties
𝑋" = 𝑌" = 𝑍" = 𝑗𝑋𝑌𝑍 = 𝕀 Eqn. (11.17).

• In addition, they have the anti-commutation relations  below.
𝑋𝑌 + 𝑌𝑋 = 0, 𝑋𝑍 + 𝑍𝑋 = 0, 𝑌𝑍 + 𝑍𝑌 = 0, 𝑍𝑋 = −𝑗𝑌 (and any permutation of this) Eqn. (11.18).

• Any combinations  of the operators above can therefore be applied to the single qubit.  Such operations 
would correspond to rotations of the single qubit on the Bloch sphere.

• A single operation (or rotation) can be therefore be accomplished by two or more rotations on the Bloch 
sphere.

• Our central result for operations (rotations) on the qubit for an arbitrary angle 𝜗 is

𝑅 23 𝜗 = 𝑒#
+
, 23.5 = cos !

"
𝕀 + 𝑗 sin !

"
w𝑛. 𝜌 Eqn. (11.18).
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Important Properties of the Pauli Matrices



• The rotation operator can rotate any Bloch vector onto any other Bloch vector, including qubits with 
global phase (which we have discussed earlier in this lecture).

• A general way to write the rotation is therefore to include a global phase, 𝜙, (if it is necessary), then
𝑈 = exp 𝑗𝜙 𝑅 23 𝜗 = Eqn. (11.19).

• As a concrete example, we will insert numerical values into (11.19);  take the global phase 𝜙 = ⁄𝜋 2 ,
𝜗 = 𝜋 and w𝑛 = 1

"
, 0, 1

"
, so 

𝑈 = exp 𝑗𝜙 𝑅 23 𝜗 = exp 𝑗𝜙 cos !
"
𝕀 + 𝑗 sin !

"
w𝑛. 𝜌 = exp 6

"
cos 6

"
𝕀 + 𝑗 sin 6

"
1
"
𝑋 + 𝑍

⟹ 𝑈 = 1
"
1 1
1 −1 = H Eqn. (11.20).

• Eqn. (11.20) is the Hadamard operator we have encountered before, which we now confirm is a rotation. 
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The Hadamard Operator as a Rotation



• A single qubit gate is defined by a unitary operator.  Similar to  the case  of a classical gate, one can 
realize a unitary operator by a physical device that performs the action of the gate on a single qubit. One 
represents the gate  symbolically as a box with one input and one output wire.

• In accordance with the Schrodinger equation (discussed in the Axioms of Quantum Mechanics), 
evolution of a state vector for a qubit starts at some initial time and stops at some predetermined time.

• The action of a quantum gate is therefore to take a qubit state from ⟩|𝜓73 at 𝑡 = 0 to another state 
⟩|𝜓89* at time 𝑡 = 𝜏. This is written mathematically as

~
⟩|𝜓73 = ⟩|𝜓(𝑡 = 0) = 𝑎0 ⟩|0 + 𝑎1 ⟩|1
⟩|𝜓89* = ⟩|𝜓(𝑡 = 𝜏) = 𝑏0 ⟩|0 + 𝑏1 ⟩|1 Eqn. (11.21).
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Single Qubit Gates



• Quantum gates are reversible because of the nature of the operator, which we said must obey the  unitarity  
condition 

𝑈𝑈/ = 𝑈/𝑈 = 𝕀 ⟹ 𝑈/ = 𝑈%1 Eqn. (11.22).

• The  input state is available from the output since
⟩|𝜓89*1 = 𝑈 ⟩|𝜓73 Eqn. (11.23);  this output can be used as input to a second gate whose action is 𝑈/ = 𝑈%1.

• Thus, ⟩|𝜓89*" = 𝑈/ ⟩|𝜓89*1 = 𝑈/ 𝑈 ⟩|𝜓73 = 𝑈/𝑈 ⟩𝜓73 = 1 ⟩|𝜓73 Eqn. (11.24).

• Single-qubit gates are linear in their function; this  means several inputs can be operated on by the gate 
one at a time.  The output will be the sum of the individual outputs for each input.  

• The Pauli matrices, 𝑋, 𝑌, 𝑍, the identity matrix, 𝐼, and the Hadamard, 𝐻, are all single-qubit operators;  we 
can represent them with gates and design gate circuits with them.
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Reversible Single-qubit Quantum Gates



• It turns out any complex  (2×2) matrix 𝐴 can be written as an expansion of the form

𝐴 =
𝑎0 + 𝑎: 𝑎; − 𝑗𝑎<
𝑎; + 𝑗𝑎< 𝑎0 − 𝑎:

= 𝑎0𝕀 + 𝑎;𝑋 + 𝑎<𝑌 + 𝑎:𝑍 = 𝑎0𝕀 + �𝑎. �𝜎 Eqn. (11.25).

• 𝕀 is the identity matrix and 𝑎0, 𝑎;, 𝑎<, 𝑎: are complex numbers; �𝑎 is a complex vector with the complex 
numbers (𝑎;, 𝑎<, 𝑎:) and �𝜎 is the Pauli “vector” with matrix components 𝑋, 𝑌, 𝑍 .

• From (11.4) and (11.18),  the unitary matrices for implementing the rotations we have been discussing 
can also be written in an alternative way as

𝑈 = 𝑢0𝕀 + 𝑗 𝑢;𝑋 + 𝑢<𝑌 + 𝑢:𝑍 , Eqn. (11.26).
• Note that the  𝑢7 can be parameterized in the terms of the polar and azimuthal angles (𝜗, 𝜑) and the unit 

vector of the Bloch sphere as before. For an operator with a global phase, the most common phase gate 
derived from (11.26) is  

𝑃! =
1 0
0 𝑒#! Eqn. (11.27).

20

Phase Gates



21

• Two-qubit gates have two inputs and two 
outputs, and like the single-qubit gates are 
reversible.

• Inputs to two-qubit gates can take a single qubit 
per input or a superposition of qubits; for 
example, the inputs to the two-qubit gate 
illustrated on the right can be written as  

⟩|𝐴7 = ⟩|0 ,  and 
⟩|𝐵7 = 1

"
𝛼 ⟩|0 + 𝛽 ⟩|1 Eqn. (11.27).

• Two-qubit gates are also linear like the single-
qubit gates we have already discussed.

Two-Qubit Gates
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• The quantum control-X gate is represented by the Pauli X operator 
(matrix); we saw that its action on ⟩|0 and ⟩|1 was, respectively, as 
follows:

𝑋 ⟩|0 = 0 1
1 0

1
0 = 0

1 = ⟩|1 ; and 

𝑋 ⟩|1 = 0 1
1 0

0
1 = 1

0 = ⟩|0 Eqn. (11.28).

• In a control-X (CNOT) gate with inputs ⟩|𝐴7 and ⟩|𝐵7 , and outputs 
⟩|𝐴8 and ⟩|𝐵8 whenever the input ⟩|𝐴7 = ⟩|1 , whatever the 

corresponding ⟩|𝐵7 input is, its output is flipped. The value of 
⟩|𝐴7 = ⟩|1 acts as control for flipping  ⟩|𝐵7 at the output.  This is 

shown on the truth Table for the CNOT gate.

• The CNOT gate is linear; this means for an input comprised of a 
superposition  of qubits,  the output can be determined by  summing 
the outputs for each individual input.

Two-Qubit Control-X (CNOT) Gate
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• By combining the Hadamard and the CNOT gate as 
shown in the graphic on the left, one can entangle qubits.  
The inputs to the CNOT gate after the Hadamard are:

⟩𝐻=7 = 𝐻 ⟩|0= = 1
"
1 1
1 −1

1
0 = 1

"
1
1 = 1

"
�

�

1
0 +

0
1 = 1

"
⟩|0= + ⟩|1= ,  Eqn. (11.29) and

⟩|𝐵7 = ⟩|0> Eqn. (11.30).

• If the  input (11.29) and (11.30) to the CNOT gate are 
acted to produce the entangled output given by

⟩|𝐴𝐵8 = 1
"

⟩|0=0> + ⟩|1=1> Eqn. (11.30).

• Four possible input combinations are possible, resulting in 
four maximally entangled Bell states.

Hadamard and the CNOT Gates as an Entangling (Bell) Circuit



• In the previous slide, we determined that a Hadamard and a CNOT gate can be combined to form a 
circuit that entangles qubits; since two-qubit gates are reversible, it should be possible to disentangle 
qubits by joining two such circuits together, where the second circuit is connect in reverse  to perform  
the   𝑈/ = 𝑈%1. Such a circuit is shown  above.

• Any combination of  the following inputs: ⟩|0=0> , ⟩|0=1> , ⟩|1=0> , ⟩|1=1> will first lead to 
entanglement by the first  circuit,  and then  disentanglement  by the second  circuit.
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Disentangling Bell Circuit



• The single-qubit Pauli  𝑋 operator became  the  
two-qubit controlled-X  gate by adding  a 
controlling  input.  One  can construct  other two-
qubit  controlled gates from  the  other Pauli 
operators.  For example, it is possible to create a 
controlled-Y and controlled-Z gates simply by 
adding a control input. The circuit diagram for a 
controlled-Y or a controlled-Z gate is shown on the 
right.

• The standard  way of writing the possible inputs 
into the control-X, control-Y, and control-Z for the 
two-qubit inputs is ⟩|0=0> , ⟩|0=1> , ⟩|1=0> , ⟩|1=1> .
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Other Two-qubit Controlled Gates



• One can change how one represents the two-qubit basis by writing out the tensor product as column 
vector; thus

⟩|0=0> ⟺

1
0
0
0

, ⟩|0=1> ⟺

0
1
0
0

,  ⟩|1=0> ⟺

0
0
1
0

, ⟩|1=1> ⟺

0
0
0
1

Eqn. (11.31)

• These can be arranged into orthogonal matrices that represent the controlled gates as follows:

• Controlled − X =

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

,  Controlled − Y =

0 −𝑗 0 0
𝑗 0 0 0
0 0 1 0
0 0 0 1

, Controlled − Z =

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

26

Matrix Representation of Controlled Gates



27

• A swap gate merely exchanges the inputs of a 
two-qubit gate with the output as illustrated in 
the graphic. The truth table for the swap 
operation is also provided.

• One can form the 4×4 matrix representation of 
the swap gate by rearranging the 4 column 
vectors representation of the input basis in 
(11.31) as

Swap =

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

Swap Gate



• Gate circuits are a combination of quantum gates interconnected in a certain manner to perform a 
particular  desired computation. The circuit operates under classical control and provides its output results 
as classical bits even though the computation is quantum mechanical.  The number of gates and hence the 
size of  a circuit depends on the computation being performed.

• As in classical circuits, a quantum circuit begins and ends its operation according to a timed clock cycle.

28

Quantum Gate Circuits 
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• In discussing classical gates and circuits (such as the 
half-adder), we discovered that we could make copies 
of input bits so that they could be used elsewhere in a 
circuit; this is called the fan-out. Does  such  a process 
exist for qubits?

• Assume it is possible to make copies of qubits;  we 
must then prove that it is either possible or impossible 
to copy (clone) qubits.

• If we can clone qubits, there must be a gate that 
accomplishes this task.  Such a gate is illustrated on the 
right.  It is a two-qubit  gate with 2 inputs and 2 outputs.  
The lower input of  the gate is permanently in the state  
⟩|0 ; this is called the ancilla qubit. The gate takes the 

top input, reproduces it at the top output  and makes 
another  copy (clone) of it at the bottom output.

Does a Gate (or a Process) for Copying Qubits Exist? 



• Given that the copying gate, ⟩|𝜅 , makes copies of the top input  at the bottom, and reproduces the input at 
the top output, it must have the following properties:
(i) 𝜅 ⟩|00 = ⟩|00 ,  ii 𝜅( ⟩10 = ⟩|11 , (iii) 𝜅 ⟩𝛼|0 + 𝛽 ⟩|1 ⟩|0 = ⟩𝛼|0 + 𝛽 ⟩|1 ⟩𝛼|0 + 𝛽 ⟩|1

Eqn. (11.32).

• The third property  in (11.32) can be expanded to
𝜅 𝛼 ⟩|00 + 𝛽 ⟩|10 = 𝛼 " ⟩|00 + α𝛽 ⟩|01 + β𝛼 ⟩|10 + 𝛽 " ⟩|11 Eqn. (11.33).

• Using linearity and property (i) and (ii) on the right-hand side of   (11.33), we obtain 
𝛼 ⟩|00 + β ⟩|11 ≠ 𝛼 " ⟩|00 + α𝛽 ⟩|01 + β𝛼 ⟩|10 + 𝛽 " ⟩|11 Eqn. (11.34).

• The inequality of the two sides of (11.34) shows that out initial assumption of the existence of a cloning 
gate is false.

• It is therefore NOT possible to clone qubits: this is the no cloning theorem of quantum  mechanics.
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No Cloning Theorem of Qubits 



• Reviewed classical gates and circuits 
– Discussed concept of a universal gate

• Detailed discussion of the qubit on the complex plane
– Derived the Bloch sphere
– Discussed operations on single qubit as rotations on the Bloch sphere
– Qubit operations as gates
– Gate based circuits  
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Summary


